These Notes are to <u>SUPPLIMENT</u> the Text, They do NOT Replace reading the Text Material Additional material that is in the Text will be on your tests!

To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

### BINARY COMPOUNDS: composed of 2 elements

- 1. Compounds that contain a metal and a nonmetal
- 2. Compounds that contain 2 nonmetals

**Roman Society** – boiled wine in lead containing containers -> produced Lead Acetate Pb (C2H3)2. It tasted sweet. The fall of the Roman Empire is due in part to lead poisoning.

#### NAMING COMPOUNDS

## Table 5.1 Common Simple Cations and Anions [ Plus some extras ]

| Cation           | Name      | Comment                         | Anion                  | Name     |
|------------------|-----------|---------------------------------|------------------------|----------|
| $H^+$            | Hydrogen  | Group 1A – Alkali Metal         | H                      | Hydride  |
| Li <sup>+</sup>  | Lithium   | Group 1A – Alkali Metal         | F⁻                     | Fluoride |
| Na <sup>+</sup>  | Sodium    | Group 1A – Alkali Metal         | Cl                     | Chloride |
| K <sup>+</sup>   | Potassium | Group 1A – Alkali Metal         | Br⁻                    | Bromide  |
| $Rb^+$           | Rubidium  | Group 1A – Alkali Metal         | I                      | Iodide   |
| Cs <sup>+</sup>  | Cesium    | Group 1A – Alkali Metal         | $O^{-2}$               | Oxide    |
| Be <sup>+2</sup> | Beryllium | Group 2A – Alkaline Earth Metal | <b>S</b> <sup>-2</sup> | Sulfide  |
| $Mg^{+2}$        | Magnesium | Group 2A – Alkaline Earth Metal |                        |          |
| Ca <sup>+2</sup> | Calcium   | Group 2A – Alkaline Earth Metal |                        |          |
| Sr <sup>+2</sup> | Strontium | Group 2A – Alkaline Earth Metal |                        |          |
| Ba <sup>+2</sup> | Barium    | Group 2A – Alkaline Earth Metal |                        |          |
| Ra <sup>+2</sup> | Radium    | Group 2A – Alkaline Earth Metal |                        |          |
| $Al^{+3}$        | Aluminum  |                                 |                        |          |
| $Ag^+$           | Silver    |                                 |                        |          |
| $Zn^{+2}$        | Zinc      |                                 |                        |          |

| Ion                             | Systematic Name            |
|---------------------------------|----------------------------|
| $Fe^{+2} / Fe^{+3}$             | Iron (II) / Iron (III)     |
| $Cu^{+1} / Cu^{+2}$             | Copper (I) / Copper (II)   |
| $Co^{+2} / Co^{+3}$             | Cobalt (II) / Cobalt (III) |
| ${\rm Sn}^{+2} / {\rm Sn}^{+4}$ | Tin (II) / Tin (IV)        |
| $Pb^{+2} / Pb^{+4}$             | Lead (II) / Lead (IV)      |
| $Hg_2^{+2} / Hg^{+2}$           | Mercury (I) / Mercury (II) |



## Types I GROUP 1 AND 2 METALS

- 1. Cation named 1st, Anoin 2nd
- 2. Simple Cation [ single atom ] takes name from the element: Na+ = Sodium
- 3. Simple Anion named taking 1st part of the element name & adding -ide : S = Sulfur = Sulfide
- 4. Halides remove ine and ide: F = Fluorine = Fluoride

## Types II TRANSITION METALS OF METALS THAT HAVE MORE THAN 1 CHARGE

- 1. Cation is always named 1st, Anion  $2^{nd}$
- 2. Cation can assume more than one charge specify the charge with Roman Numeral
  - PbO<sub>2</sub> Lead (IV) Oxide

| _                 |                     |                                                                                    |
|-------------------|---------------------|------------------------------------------------------------------------------------|
| FeCl <sub>3</sub> | Iron (III) Chloride | $FeCl_2 = Iron (II)$ Chloride (ic 1st, ous 2 <sup>nd</sup> not used in this class) |
| CuCl              | Copper (I) Chloride |                                                                                    |
| HgO               | Mercury (II) Oxide  | Hg <sub>2</sub> O Mercury (I) Oxide                                                |
| $Fe_2O_3$         | Iron (III) Oxide    |                                                                                    |
| Mao               | Managana (IV) Orid  |                                                                                    |

- $MnO_2$  Manganese (IV) Oxide
- PbCl<sub>4</sub> Lead (IV) Chloride

#### Types III Binary Compounds contain NonMetals (Type III) - There is NO Metal present

- 1. The 1st element is named first and the full name is used
- 2. The 2nd element is named as if it were an ANION [ ide ]
- 3. Prefixes denote the number of atoms present [ See Table 5.3 ]

Prefix MONO is never used for the 1st element

| 1. | Mono | 3. Tri   | 5. Penta | 7. I | Hepta |
|----|------|----------|----------|------|-------|
| 2. | Di   | 4. Tetra | 6. Hexa  | 8. 0 | Octa  |

Metals loses one or more electrons to become a CATION

 $Na -> Na^{+} + 1e^{-}$ 

NonMetals gain one or more electrons to become an ANION

 $Cl + 1e^{-} \rightarrow Cl^{-}$ 

Combining a Metal and a Non-Metal results in a **Binary Ionic Compound** Compounds formed from metals and nonmetals are IONIC. In Ionic compounds, the CATION is always named first. The **Net Charge** on an IONIC compound **IS ALWAYS ZERO**.  $CsF=Cs^+$  and  $F^-$  AlCl<sub>3</sub> = Al<sup>+3</sup> and three Cl<sup>-</sup>

27 February 2008

| Examples Naming: | Positive – Cation – Named First |
|------------------|---------------------------------|
|                  | Negative – Anion named next     |

Sodium Cation is always Na<sup>+</sup> Chlorine Anion is always Cl<sup>-</sup>

**Type I Compunds** – Metal is present, forms only one type of Cation

| Group 1 Metal gives +1 Cation  | Sodium = $Na^{-1}$    |
|--------------------------------|-----------------------|
| Group II Metal gives +2 Cation | Magnesium = $Mg^{+2}$ |

| CsF               | Cesium Fluoride   | Cs Group 1                        |
|-------------------|-------------------|-----------------------------------|
| AlCl <sub>3</sub> | Aluminum Chloride | Al always forms Al <sup>+3</sup>  |
| $MgI_2$           | Magnesium Iodide  | Mg Group 2 Forms Mg <sup>+2</sup> |
| $Rb_2 O$          | Rubdium Oxide     |                                   |
| SrI <sub>2</sub>  | Strontium Iodide  |                                   |
| $K_2S$            | Potassium Sulfide |                                   |

**Type II Compounds** – Metal is present, forms two or more Cations with different charges and names $Fe^{+2} = Iron (II)$  $Fe^{+3} = Iron (III)$ 

# **Examples:**

| Formulae          | Cation charge | Comment               |                        |
|-------------------|---------------|-----------------------|------------------------|
| CoBr <sub>2</sub> | +2            | Cobalt (II) Bromide   | forms +2 and +3 Cation |
| CaCl <sub>2</sub> | +2            | Calcium Chloride      | only forms one Cation  |
| $Al_2O_3$         | +3            | Aluminum Oxide        | only forms one Cation  |
| PbBr <sub>2</sub> | +2            | Lead (II) Bromide     |                        |
| PbBr <sub>4</sub> | +4            | Lead (IV) Bromide     |                        |
| FeS               | +2            | Iron (II) Sulfide     |                        |
| $Fe_2S_3$         | +3            | Iron (III) Sulfide    |                        |
| AlBr <sub>3</sub> | +3            | Aluminum Bromide      |                        |
| Na <sub>2</sub> S | +2            | Sodium Sulfide        |                        |
| CoCl <sub>3</sub> | +3            | Cobalt (III) Chloride |                        |

## Type III Compounds – There is NO Metal present.

| BF <sub>3</sub> | Boron Tri Fluoride   | $CCl_4$         | Carbon Tetrachloride  |
|-----------------|----------------------|-----------------|-----------------------|
| NO              | Nitrogen Monoxide    | $NO_2$          | Nitrogen DiOxide      |
| $N_2O_3$        | DiNitrogen Pentoxide | IF <sub>5</sub> | Iodine Penta Fluoride |
| CO              | Carbon Monoxide      |                 |                       |

| Di Hydrogen Monoxide        |
|-----------------------------|
| Phosphorous PentaChloride   |
| Tetra Phosphorous HexaOxide |
| Sulfur Hexa Fluroide        |
| Sulfur Tri Oxide            |
| Sulfur Di Oxide             |
|                             |

Carbon Dioxide

#### More Examples:

 $CO_2$ 

| CuO                | Copper (II) Oxide       |
|--------------------|-------------------------|
| SrO                | Strontium (II) Oxide    |
| $Br_2O_3$          | Di Bromine Tri Oxide    |
| Ti Cl <sub>4</sub> | Titanium Penta Chloride |
| $K_2S$             | Potassium Sulfide       |
| 2000               |                         |

| OF <sub>2</sub>  | Oxygen Di Fluoride               |
|------------------|----------------------------------|
| NH <sub>3</sub>  | Nitrogen Tri Hydride [ Ammonia ] |
| ClF <sub>3</sub> | Chlorine Tri Fluoride            |
| VF <sub>5</sub>  | Vanadium (V) Fluoride            |
| CuCl             | Copper (I) Chloride              |
| MnO <sub>2</sub> | Manganese (IV) Oxide             |
| MgO              | Magnesium Oxide                  |
| $H_2O$           | Di Hyrogen Monoxide              |
| $O_2F_2$         | Di Oxygen Di Fluoride            |
| XeF <sub>6</sub> | Xenon Hexa Fluoride              |
|                  |                                  |

**PolyAtomic Ions** – several atoms bonded together – Ya gotta just memorize these: [See Table 5.4]

| [ 2                           | ee Table 5.          | 4 ]                |                |                               |                    |
|-------------------------------|----------------------|--------------------|----------------|-------------------------------|--------------------|
| NH                            | $\mathbf{H}_{4}^{+}$ | Ammonium           |                | $CO_{3}^{-2}$                 | Carbonate          |
|                               |                      |                    |                | HCO <sub>3</sub> <sup>-</sup> | Hydrogen Carbonate |
| NC                            | $D_2^-$              | Nitrate            |                |                               | -or- Bicarbonate   |
| NC                            | $D_{3}^{-}$          | Nitrite            |                |                               |                    |
|                               |                      |                    |                | ClO                           | Hypo Chlorite      |
| $SO_3^{-2}$                   |                      | Sulfite            |                | $ClO_2^-$                     | Chlorite           |
| SO                            | ${\bf 0}_4^{-2}$     | Sulfate            |                | $ClO_3$                       | Chlorate           |
| HSO <sub>4</sub> <sup>-</sup> |                      | Hydrogen Su        | ılfate         | $ClO_4^-$                     | Per Chlorate       |
|                               |                      | -or- Bisulfate     | e<br>e         |                               |                    |
|                               |                      |                    |                | $C_2H_3O_2^-$                 | Acetate            |
| OH                            |                      | Hydroxide          |                | $MnO_4$                       | Permanganate       |
| CN                            | 1-                   | Cyanide            |                | 2                             |                    |
|                               | 2                    |                    |                | $Cr_2O_7^{-2}$                | Dichromate         |
| $PO_4^{-3}$                   |                      | Phosphate          |                | $CrO_4^{-2}$                  | Chromate           |
| HP                            | $PO_4^{-2}$          | Hydrogen Ph        | osphate        |                               |                    |
| $H_2$                         | $PO_4$               | DiHydrogen         | Phosphate      | $O_2^{-2}$                    | Peroxide           |
| A Trick:                      | ClO <sup>-</sup>     | 1 Oxygen           | HYPO chlor ITE | Least Oxyg                    | en = HYPO          |
|                               | $ClO_2^-$            | 2 Oxygen chlor ITE |                | Fewer Oxygen = ITE            |                    |
|                               | $ClO_3^-$            | 3 Oxygen           | chlor ATE      | More Oxyg                     | en = ATE           |
|                               | $ClO_4^-$            | 4 Oxygen           | PER chlor ATE  | Most Oxyg                     | en = PER           |

Acids – An Acid is a Proton Donor

Base – A base is an Hydroxide Donor or Proton Acceptor

# Common Acids:

| $H_2SO_3$        | Sulfurous Acid                     | HF     | Hydrofluoric Acid  |
|------------------|------------------------------------|--------|--------------------|
| $H_2SO_4$        | Sulfuric Acid                      | HCl    | Hydrochloric Acid  |
|                  |                                    | HBr    | HydroBromic Acid   |
| $HNO_2$          | Nitrous Acid                       | HI     | HyrdoIodic Acid    |
| HNO <sub>3</sub> | Nitric Acid                        |        | -                  |
|                  |                                    | HCN    | HydroCyanic Acid   |
| $H_3PO_4$        | Phosphoric Acid                    | $H_2S$ | HydroSulfuric Acid |
| $HC_2H_3O_2$     | Acetic Acid [ diluted is vinegar ] |        |                    |
|                  |                                    |        |                    |